962 research outputs found

    Identification of avian Mycoplasma species in commercial broilers and layers with respiratory symptoms in Balochistan

    Get PDF
    Among many avian mycoplasmas, only the Mycoplasmas gallisepticum (MG) and Mycoplasmas synoviae (MS) are responsible for causing respiratory disease in commercial poultry. This study reported for the very first time the serological occurrence of M. gallisepticum and M. synoviae in blood samples (n = 600) from sixty flocks (n = 42 broiler and n = 18 layer flocks) with respiratory symptoms in Quetta, Pishin and Kuchlak districts of Balochistan, Pakistan. Sera were tested for MG and MS antibody responses by serum plate agglutination (SPA) test and by enzyme-linked immunosorbant assay (ELISA) Synbiotics kit. It was found that M. gallisepticum antibodies in broiler flocks detected by SPA and by ELISA tests were 10.47 and 19.76%, whereas M. synoviae were 7.86 and 11.19%, respectively. In layer flocks the MG and MS antibodies detected by SPA and ELISA were 19.44, 31.66 and 8.8, 25%, respectively. The overall antibodies of MG and MS in both broiler and layer flocks tested by SPA and ELISA was found to be 13.16, 23.33 and 8.16, 15.33%, respectively. In broiler and layer flocks the presence of antibodies against both M. gallisepticum and M. synoviae were found in tested flocks with respiratory symptoms. Further studies on prevalence and diagnosis of both the M. gallisepticum and M. synoviae in causing respiratory disease in commercial broilers and layers in Balochistan are required.Key words: Mycoplasma, broilers, serum plate agglutination, enzyme-linked immunosorbent assay

    Self-ligating brackets versus conventional pre-adjusted edgewise brackets for treating malocclusion (Protocol).

    Get PDF
    -National Institute for Health Research (NIHR), UK. -Cochrane Or -al Health Global Alliance, Other

    Effect of Addition of Palm Oil Biodiesel in Waste Plastic Oil on Diesel Engine Performance, Emission, and Lubricity.

    Full text link
    This research was aimed to examine the diesel engine's performance and emission of secondary fuels (SFs), comprising waste plastic oil (WPO) and palm oil biodiesel (POB), and to analyze their tribological properties. Their compositions were analyzed by gas chromatography-mass spectrometry (GC-MS). Five SFs (10-50% POB in WPO) were prepared by mechanical stirring. The results were compared to blank WPO (WPO100) and Malaysian commercial diesel (B10). WPO90 showed the maximum brake power (BP) and brake torque (BT) among the SFs, and their values were 0.52 and 0.59% higher compared to B10, respectively. The increase in POB ratio (20-50%) showed a negligible difference in BP and BT. WPO70 showed the lowest brake-specific fuel consumption among the SFs. The brake thermal efficiency (BTE) increased with POB composition. The maximum reductions in emission of hydrocarbon (HC, 37.21%) and carbon monoxide (CO, 27.10%) were achieved by WPO50 among the SFs. WPO90 showed the maximum reduction in CO2 emission (6.78%). Increasing the POB composition reduced the CO emissions and increased the CO2 emissions. All SFs showed a higher coefficient of friction (COF) than WPO100. WPO50 showed the minimal increase in COF of 2.45%. WPO90 showed the maximum reduction in wear scar diameter (WSD), by 10.34%, compared to B10. Among the secondary contaminated samples, SAE40-WPO90 showed the lowest COF, with 5.98% reduction compared to SAE40-WPO100. However, with increasing POB content in the secondary contaminated samples, the COF increased. The same trend was also observed in their WSD. Overall, WPO90 is the optimal SF with excellent potential for diesel engines

    Ulnar dimelia variant: a case report

    Get PDF
    We report a case of ulnar dimelia, commonly called mirror hand, in a 2-month-old female child who had restriction of elbow flexion and forearm rotation. There was no facial or other internal organ malformation. Radiographs revealed seven triphalangeal digits with double ulnae (one following the other) and absent radius. To the best of the authors’ knowledge, this is the first report of this mirror hand deformity in which fingers are symmetrical while duplicated ulnae are not

    Framework for Environmentally Sustainable Fashion and Textile Production to achieve United Nation (UN) Sustainable Development Goal (SDG) 12

    Get PDF
    A framework with three key actions - identify (I), act (A), and evaluate (E) to achieve complete environmental sustainability in fashion and textile production in line with SDG 12– has been developed as a part of a Global Challenge Research Fund (GCRF) project. Called as the ‘I-A-E framework’, it emphasises more on zero or near-zero waste generation at source and incorporating sustainability thinking in material and process selections, rather than post-production waste management after generating huge amounts of wastes and effluents. The first step involves ‘identifying’ present scenarios and points of action in context of resource consumption, air pollution and greenhouse gas emissions, water pollution, and solid waste generation in product development and production. The next step is to ‘act’ for sustainable development, which includes - incorporating a zero-waste philosophy during production, incorporating sustainability thinking into material selection and incorporating sustainability into production process, incorporating sustainability in resource and waste management. The third component of the framework is to ‘evaluate’ to celebrate and move forward by checking the eco-indices to amend targets or set new ones. This new framework was validated through stakeholders’ workshops and roundtable discussion. It is an easy-to-follow toolkit that the fashion and textile industry will be able to implement into their product development and production activities

    The Crabtree effect shapes the Saccharomyces cerevisiae lag phase during the switch between different carbon sources

    Get PDF
    When faced with environmental changes, microbes often enter a temporary growth arrest during which they reprogram the expression of specific genes to adapt to the new conditions. A prime example of such a lag phase occurs when microbes need to switch from glucose to other, less-preferred carbon sources. Despite its industrial relevance, the genetic network that determines the duration of the lag phase has not been studied in much detail. Here, we performed a genome-wide Bar-Seq screen to identify genetic determinants of the Saccharomyces cerevisiae glucose-to-galactose lag phase. The results show that genes involved in respiration, and specifically those encoding complexes III and IV of the electron transport chain, are needed for efficient growth resumption after the lag phase. Anaerobic growth experiments confirmed the importance of respiratory energy conversion in determining the lag phase duration. Moreover, overexpression of the central regulator of respiration, HAP4, leads to significantly shorter lag phases. Together, these results suggest that the glucose-induced repression of respiration, known as the Crabtree effect, is a major determinant of microbial fitness in fluctuating carbon environments. IMPORTANCE: The lag phase is arguably one of the prime characteristics of microbial growth. Longer lag phases result in lower competitive fitness in variable environments, and the duration of the lag phase is also important in many industrial processes where long lag phases lead to sluggish, less efficient fermentations. Despite the immense importance of the lag phase, surprisingly little is known about the exact molecular processes that determine its duration. Our study uses the molecular toolbox of S. cerevisiae combined with detailed growth experiments to reveal how the transition from fermentative to respirative metabolism is a key bottleneck for cells to overcome the lag phase. Together, our findings not only yield insight into the key molecular processes and genes that influence lag duration but also open routes to increase the efficiency of industrial fermentations and offer an experimental framework to study other types of lag behavior

    Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study

    Get PDF
    An investigation into two non-toxic natural coagulants abundantly growing in different countries, cactus (Opuntia spp.) and okra was performed on monthly river water samples (one-year period). The studied case was the Euphrates river/Al-Mashroo canal/Iraq. Six statistical models were interpreted and tested describing the residual turbidity after Coagulation-Flocculation for the three studied cases (Optimum-Coagulant-Dose, Optimum-Flocculator-Velocity-Gradient and Optimum-Flocculation-Time). According to the environmental parameters recorded during the study and the statistical analyses, two facts were concluded. The first fact was that controlling the Optimum-Flocculator-Velocity-Gradient of the Coagulation-Flocculation process gave the highest contribution ratio of the models. The second fact was that the most significant environmental parameter (statistically) in the Coagulation-Flocculation process was the initial turbidity. This was proved for the two natural coagulants under study. Also, from the results of the study, it was concluded that the two natural coagulants were of similar coagulation-flocculation properties, and they were competent for turbidity removal

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
    • 

    corecore